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Abstract Categorymanagement requires sales responsemodels helping to simultane-
ously estimatemarketingmix effects for all brands of a product category.We, therefore,
develop a general heterogeneity seemingly unrelated regression (SUR) model accom-
modating correlations between sales across brands. This model contains a latent class
SUR model, the well-known hierarchical Bayesian SUR model and the homogeneous
SUR model as special cases. We further propose a hierarchical Bayesian semipara-
metric SUR model based on Bayesian P-splines which comprises a homogeneous
semiparametric SUR model as nested version. The results of an empirical application
with store-level scanner data indicate that the flexible SUR approaches of modeling
price response clearly outperform the various parametric (homogeneous and hetero-
geneous) SUR approaches with respect to not only predictive validity but also total
expected category profits. In particular, functional flexibility turns out to be the primary
driver for improving the predictive performance of a store salesmodel as heterogeneity
pays off only once functional flexibility has been accounted for. Furthermore, since
both flexible SUR models perform nearly equally well with respect to expected cat-
egory profits, a uniform pricing strategy which is much less complex to implement
than micromarketing can be recommended for our data.
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1 Introduction

Oneof themost important challenges of a retailer in today’s competitive environment is
setting prices for the various brands in the product categories he offers in his retail chain
(Nijs et al. 2007). Following recommendations in the marketing literature, e.g., by
Basuroy et al. (2001), Chen et al. (1999), Chintagunta (2002), Hall et al. (2010), Levy
et al. (2004) and Zenor (1994), retailers should adopt a categorymanagement approach
to develop a profitable pricing strategy. This approach implies that demand, costs and
prices of competing brands belonging to the same product category are accounted for
when prices of the brand under consideration are determined (Zenor 1994). Empirical
evidence that the profitability of a retailer can be increased considerably by moving on
to profit maximization at the category-level instead of maximization at the brand-level
is among others given by Basuroy et al. (2001), Hall et al. (2010) and Zenor (1994).
The trend toward category management requires models helping to simultaneously
estimate demand or sales of all brands belonging to the same product category.

Zellner (1962) introduced a seemingly unrelated regression (SUR) model that
accounts for correlations between response variables. A nonparametric version was,
e.g., suggested by Smith and Kohn (2000) who demonstrated in their simulation study
that estimated nonlinear effects are biased and inefficient if separate univariate regres-
sions instead of a multivariate regression system are applied (Lang et al. 2003). Lang
et al. (2003) further have shown in a simulation study that a semiparametric SUR
model is efficient even if the error terms of the individual regression equations are
actually uncorrelated. However, if the error terms are correlated and design matrices
are different across equations the benefits from adopting the semiparametric SUR
approach are substantial compared to the use of single semiparametric regressions.

In the context of store sales modeling, there are only few studies applying SUR
models that account for correlations between sales across brands. Along the lines
of Hruschka (2006a) these studies can be characterized by two groups: while the
first group accounts for heterogeneity across stores but models sales response para-
metrically (e.g., Hoch et al. 1995; Kamakura and Kang 2007; Montgomery 1997;
Montgomery and Rossi 1999)1 the second group allows for functional flexibility but
assumes homogeneous marketing mix effects (e.g., Lang et al. 2003). The present
study investigates advantages of both groups and consolidates the two streams of SUR
store models. In particular, we introduce a hierarchical Bayesian semiparametric SUR
model which simultaneously accounts for store heterogeneity, functional flexibility
and correlations between sales across brands. Hence, this model estimates store-
specific nonlinear price effects simultaneously for all brands of a product category
and constitutes a generalization of the hierarchical Bayesian semiparametric model at

1 Further studies either account for heterogeneity by using only store dummies (e.g., Reibstein andGatignon
1984) or by estimating sales response for each store separately (e.g., Mulhern and Leone 1991) or do not
account for heterogeneity (e.g., Hall et al. 2010).

123



www.manaraa.com

A comparison of semiparametric and heterogeneous… 405

the brand-level introduced by Lang et al. (2015). Special cases are the homogeneous
semiparametric SUR model (e.g., Lang et al. 2003) representing the research stream
which accommodates functional flexibility only, as well as the hierarchical Bayesian
SURmodel (e.g.,Montgomery 1997) representing the research streamwhich accounts
for store heterogeneity only, as well as the simple homogeneous SUR model (e.g.,
Greene 2008; Zellner 1962) which constrains marketing effects to be equal across
stores. Concerning the latter stream, we additionally develop a general heterogeneity
SUR model by extending the general heterogeneity model (e.g. Allenby et al. 1998;
Frühwirth-Schnatter 2006; Lenk and DeSarbo 2000; Rossi et al. 2005; Verbeke and
Lesaffre 1996). Accordingly, this model derives segments of stores and allows for
heterogeneity within these segments by providing store-specific parameters. It further
comprises the simple homogeneous SURmodel , a hierarchical Bayesian SURmodel,
and a latent class SUR model which yields segment-specific parameters and does not
allow for heterogeneity within segments. To the best of our knowledge, the hierarchi-
cal Bayesian semiparametric SUR model, the general heterogeneity SUR model as
well as the latent class SUR model are new in the marketing literature.

Retailers typically use some form of price discrimination in order to increase their
profitability (Khan and Jain 2005). The various models of our study enable different
types of price discrimination depending on their type of representing heterogeneity.
Hence, the homogeneous SUR models (parametric as well as semiparametric) lead
to a uniform pricing policy setting the same prices in all stores of a retail chain. The
hierarchical Bayesian SUR models (parametric as well as semiparametric) and the
general heterogeneity SUR model entail a store-level pricing policy (referred to as
micromarketing) where prices are allowed to vary across stores. That way, differences
in price response across different store locations can be exploited (Hoch et al. 1995).
In-between the extremes of uniform versus store-level pricing lies the segment-level
approach which leads to the same prices within segments or groups of stores and can
be accomplished by the latent class SURmodel as well as by the general heterogeneity
SUR model. A special case of the latter pricing policy is the so-called zone pricing
policy which is widely used in the US grocery retailing industry (e.g., Chintagunta
et al. 2003; Dobson and Waterson 2008; Hoch et al. 1995; Montgomery 1997). Here,
stores are assigned to different price zones which are defined almost exclusively by
the extent of local competition (Hoch et al. 1995). For example, from the study of
Hoch et al. (1995), it becomes evident that no relation between the price zones of
the large supermarket chain Dominick’s Finer Foods (DFF) and price sensitivities of
consumers exists. Thus, there should be huge potential for improving a retailer’s zone
pricing policy by determining zones or segments of stores based on differences in
price response across stores.

Montgomery (1997) estimates a hierarchical Bayesian SUR model which relates
possible store-specific differences in marketing mix effects with characteristics con-
cerning demographics and local competition of the stores. His study demonstrates the
superiority of micromarketing with respect to expected profits compared to a uniform
pricing policy. He further shows that the current zone pricing policy of DFF is indeed
better than a policy without price discrimination but could be improved by modified
zones. Chintagunta et al. (2003) report similar results in the context of a mixed logit
demand model with random coefficients. Thus, profits can be increased considerably
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if the retail chain switches to a store-level pricing policy. However, this could lead
to significant losses in customer welfare. Based on the store-level results of their
micromarketing approach, they divided the stores into five zones which lead to higher
expected profits compared to the existing zones of DFF emphasizing the potential for
improving these zones, as well. Khan and Jain (2005) use an aggregate mixed logit
approach and provide empirical evidence of significant profit increases when prices
are allowed to vary across stores. Finally, Hruschka (2007) specifies his sales response
model as amultilayer perceptron (neural network) with store-specific coefficients. The
optimization procedure used simultaneously determines optimal prices and the num-
ber of clusters (segments of stores). That way, Hruschka shows that expected profits
increase with the number of clusters and are highest for a store-level pricing policy.

The central concern of the present study is the comparison of sales response mod-
els that imply different pricing policies at different aggregation levels (chain-level
vs. segment-level vs. store-level). The main difference compared to previous studies
is, however, that models are already estimated at that level at which pricing decisions
should bemade. For example, we estimate a latent class SURmodel yielding segment-
specific price effects in order to determine segment-specific optimal prices, while a
hierarchical Bayesian SUR model yielding store-specific price effects is estimated in
order to determine store-specific optimal prices. So far, with the exception of Mont-
gomery (1997) there is no study which simultaneously estimates store sales models
for all brands of a product category and simultaneously determines optimal prices
for those brands. However, the optimization results of Montgomery (1997) are based
on only one model which provides coefficients at the store-level. In addition, to the
best of our knowledge determining optimal prices based on a sales response model
that allows for both functional flexibility in terms of a heterogeneous semiparametric
specification of price effects and correlations between sales across brands has not yet
been proposed in the relevant literature.2

Accordingly, the main objectives of our study can be summarized by the following
questions:

1. Does a category-level sales response model that allows for correlations between
sales across brands benefit from accommodating either store heterogeneity, or
functional flexibility, or both features in terms of fit and predictive validity? And
if, which of those features pays off more?

2. Do category-level store sales models with different representations of heterogene-
ity and/or flexiblymodeled price effects provide different implicationswith respect
to expected profits and optimal prices?

3. Should retailers adopt a store-level, segment-level or chain-level pricing policy?

To answer these questions, we follow Lang et al. (2015) and explore whether a store
sales model benefits from accommodating either heterogeneity, functional flexibility,
or both features by comparing parametric sales response models accounting for het-
erogeneity only, a homogeneous semiparametric sales response model that allows for
functional flexibility only, and a heterogeneous semiparametricmodel accommodating

2 Optimal prices based on a homogeneous semiparametric SUR model were already determined in Weber
(2015).
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both features to a simple model capturing none of these features. Our study, however,
differs from that of Lang et al. (2015) in the following aspects: first, while Lang et al.
(2015) estimate store sales models at the brand-level (i.e., separately for each brand),
estimation of our models is conducted at the category-level (i.e., simultaneously for
all brands) accounting for correlations between sales across brands. Second, in our
parametric models store heterogeneity is accounted for by different representations
of heterogeneity yielding store-specific effects (hierarchical Bayesian SUR model),
segment-specific effects (latent class SUR model) as well as store-specific market-
ing effects within segments (general heterogeneity SUR model), whereas Lang et al.
(2015) only address store-specific differences in sales response using the hierarchical
Bayes model. Third, profit and pricing implications are obtained in Lang et al. (2015)
through maximization of expected profits at the brand-level. In contrast, we maximize
the category profit and determine optimal prices simultaneously for all brands of the
product category.

Our results will indicate that the flexible SUR approaches of modeling price
response clearly outperform the various parametric (homogeneous and heterogeneous)
SUR approaches not only with respect to predictive validity but also with respect to
total expected category profits. In particular, functional flexibility turns out to be the
primary driver for improving the predictive performance of a store sales model as
heterogeneity pays off only once functional flexibility has been accounted for. Fur-
thermore, since the flexible SUR models perform nearly equally well with regard to
expected profits a uniform pricing strategy which is much less complex to imple-
ment than micromarketing can be recommended for the retailer considered in our
empirical application. Of course, profit and pricing implications may change when
extending our model framework from the current category management point of view
to a cross-category management approach, for example. We address this latter point
in the summary and discussion section of the paper.

The rest of the paper is organized as follows: the next section introduces the general
heterogeneity SUR model as well as the hierarchical Bayesian semiparametric SUR
model and all nested versions of these models. Moreover, the procedure to determine
optimal prices and expected profits for the whole product category is described. Sub-
sequently, the various model versions are compared in an empirical application using
store-level scanner data from both a statistical and a managerial point of view. A final
discussion of results and an outlook on further research perspectives complete the
paper.

2 Methodology

2.1 Modeling sales response

The general heterogeneity SUR model Our proposed model is a combination of the
general heterogeneity model introduced by Verbeke and Lesaffre (1996) and the well-
known seemingly unrelated regression model introduced by Zellner (1962). That way,
we are able to model store-specific sales response within segments of stores and
simultaneously allow for correlations between brands. To be more precise, for each
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brand the log unit sales are modeled as a sum of store-specific own- and cross-item
price and own-item display effects as well as 9- and 99-ending price effects on the one
hand and fixed holiday effects on the other hand:

ymit = ln Qmit = γmi0 +
M∑

j=1

βmi j ln(Pjit ) +
L∑

l=1

γmil D
l
mit

+ δmEt + εmit , εmit ∼ N (0, σ 2), (1)

with

Qmit unit sales of brand m (m = 1, . . . , M) in store i (i = 1, . . . , N ) and week t
(t = 1, . . . , Ti );

Pjit observed unit price for brand j in store i and week t ;
Dl
mit further observed covariates (l = 1, . . . , L) including own display and price

ending variables;
Et dummy variable indicating if there is a holiday in week t (=1) or not (=0);

γmi0 store effect for brandm accounting for differences in baseline sales across stores
(e.g., due to their spatial location);

βmi j own-item price effect ( j = m) and cross-item price effects ( j �= m) for brand
m in store i ;

γmil effects of further covariates (l = 1, . . . , L) for brand m in store i ;
δm holiday effect for brand m and

εmit disturbance term.

Using matrix notation model (1) can be rewritten as

ymi = Xmiαm + Wmiβmi + εmi , εmi ∼ N (0, σ 2
m ITi ), (2)

where ymi is the vector of Ti observed log unit sales of brand m in store i , Xmi is a
Ti × dm design matrix for the fixed effects of brand m which are equal across stores,
and Wmi is a Ti × rm design matrix for the store-specific effects of brand m. The
corresponding effects are contained in the dm × 1 vector αm and in the rm × 1 vector
βmi , respectively. εmi is a Ti × 1 vector of error terms following a multivariate normal
distribution with mean 0 and covariance matrix σ 2

m ITi . The M×1 vector of error terms
(ε1i t , . . . , εMit )

′ across brands follows a multivariate normal distribution N (0,Σ),
too.3 Note that σ 2

m corresponds to the mth diagonal element of Σ .
We obtain the general heterogeneity SUR model by combining the sales response

models of all brands into one system of equations:

⎡

⎢⎣
y1i
...

yMi

⎤

⎥⎦ =
⎡

⎢⎣
X1i

. . .

XMi

⎤

⎥⎦

⎡

⎢⎣
α1
...

αM

⎤

⎥⎦ +
⎡

⎢⎣
W1i

. . .

WMi

⎤

⎥⎦

⎡

⎢⎣
β1i
...

βMi

⎤

⎥⎦ +
⎡

⎢⎣
ε1i
...

εMi

⎤

⎥⎦ , (3)

3 For simplicity, we assume that correlations between brands are the same for all stores, i.e. Σi = Σ ∀i .
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or in a more compact form specified as

yi = Xiα + Wiβi + εi , εi ∼ N
(
0,Σ ⊗ ITi

)
. (4)

The general heterogeneity (SUR)model assumes that each store-specific coefficient
βi can be assigned to one of K segments and follows amultivariate normal distribution
within the segment (Lenk andDeSarbo 2000). Hence, the distribution of heterogeneity
is modeled as a mixture of multivariate normal distributions

βi ∼
K∑

k=1

ηk N
(
βG
k , QG

k

)
(5)

with unknown segment means βG
1 , . . . , βG

K , unknown covariance matrices QG
1 , . . . ,

QG
K and unknown segment probabilities η = (η1, . . . , ηK )′ (Frühwirth-Schnatter et al.

2005). If class membership is known βi is multivariate normally distributed with mean
βG
k and covariance matrix QG

k if store i belongs to segment k. In this case, ηk is
the proportion of all stores belonging to segment k (Lenk and DeSarbo 2000). By
introducing a latent segment indicator Si , i = 1, . . . , N , taking values in {1, . . . , K }
with probabilities P (Si = k) = ηk model (5) can be written as (Frühwirth-Schnatter
et al. 2004):

βi ∼

⎧
⎪⎪⎨

⎪⎪⎩

N
(
βG
1 , QG

1

)
, if Si = 1,

...

N
(
βG
K , QG

K

)
, if Si = K .

(6)

Depending on the number of segments K and the covariance matrices QG
k (k =

1, . . . , K ) there are some special cases of the general heterogeneity SUR model:

1. For K = 1 and QG
k = 0, we obtain the conventional homogeneous SUR model

as introduced by Zellner (1962). Consequently, all store-specific coefficients βi
correspond to the single mean βG

1 and are equal across stores.
2. For K = 1 and QG

k �= 0, a hierarchical Bayesian SUR model results, e.g., as it
was applied by Montgomery (1997). Here, all store-specific coefficients βi follow
the same multivariate normal distribution.

3. For K �= 1 and QG
k = 0 (k = 1, . . . , K ), we obtain a latent class SUR model.

Accordingly, all store-specific coefficients are equal to the corresponding segment
mean but vary across segments.

Within a fully Bayesian framework the unknown parameters φ = (α, βG
1 , . . . ,

βG
K , η, QG

1 , . . . , QG
K ,Σ) have to be supplemented with prior distributions. Accord-

ing to common practice, we use conjugate priors (following e.g. Allenby et al. 1998;
Frühwirth-Schnatter et al. 2005; Koop 2003; Lenk and DeSarbo 2000). Hence, we
use a Dirichlet prior D(e01, . . . , e0K ) for the segment probabilities η and place mul-
tivariate normal priors N (μ0α,Σ0α) and N (μ0βG

k
,Σ0βG

k
) on the fixed effects α and

the segment-specific effects βG
k (k = 1, . . . , K ), respectively. Finally, the covariance
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matrices QG
k (k = 1, . . . , K ) and Σ are supplemented with inverse Wishart priors

IW (a0QG
k
, B0QG

k
) and IW (a0Σ, B0Σ), respectively.

Estimation of the general heterogeneity SUR model is based on the partly mar-
ginalized random permutation Gibbs sampling algorithm which was suggested by
Frühwirth-Schnatter et al. (2004) in the context of single regression models. We
adapted this algorithm to our more general SUR approach.4 Details on further prior
specifications and the sampling scheme are provided in Appendix 1.

The hierarchical Bayesian semiparametric SUR model We consider a hierarchical
Bayesian semiparametric SUR approach by combining the hierarchical Bayes SUR
model nested in the general heterogeneity SUR model with a semiparametric SUR
model similar to that of Lang et al. (2003).5 Contrary to the parametric approach,
own- and cross-item price effects are now modeled nonparametrically leading to the
following heterogeneous semiparametric sales response model for one brand m:

ymit = ln Qmit = γmi0 +
M∑

j=1

(1 + αmi j ) fmj (Pjit ) +
L∑

l=1

γmil D
l
mit

+ δmEt + εmit , εmit ∼ N (0, σ 2), (7)

with unknown smooth functions fmj (Pjit ), m = 1, . . . , M and j = 1, . . . , M , mul-
tiplied by store-specific random effects. Following Steiner et al. (2007), we apply a
Bayesian P(enalized)-spline approach. Accordingly, the unknown smooth functions
fmj can be written as a linear combination of B-spline basis functions (e.g. Brezger
and Steiner 2008) which is given by

fmj (x) =
Omj∑

o=1

βmjoBmjo (x) (8)

for the j th price effect of brand m. Penalization of too large deviations between
adjacent regression coefficients is accomplished by second order random walks (e.g.,
Lang and Brezger 2004):

βmjo = 2βmj,o−1 − βmj,o−2 + umjo, umjo ∼ N (0, τ 2mj ). (9)

Furthermore, following Brezger and Steiner (2008), monotonicity constraints are
imposed on own- and cross-item price effects.

We obtain a hierarchical Bayesian semiparametric SUR model by combining the
sales response models of all brands into one system of equations:

4 Identification problems due to label switching (Celeux et al. 2000) are considered by determining iden-
tifiability constraints as described in Frühwirth-Schnatter et al. (2004). Subsequently, we use a constrained
permutation sampler as suggested in Frühwirth-Schnatter (2001).
5 Thus, our proposed model constitutes an extension of the hierarchical Bayesian semiparametric approach
introduced by Lang et al. (2015).
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⎡

⎢⎣
y1
...

yM

⎤

⎥⎦ =
⎡

⎢⎣
A11X11

. . .

AM1XM1

⎤

⎥⎦

⎡

⎢⎣
β11
...

βM1

⎤

⎥⎦ + · · ·

+
⎡

⎢⎣
A1M X1M

. . .

AMM XMM

⎤

⎥⎦

⎡

⎢⎣
β1M

...

βMM

⎤

⎥⎦

+
⎡

⎢⎣
W10Z

. . .

WM0Z

⎤

⎥⎦

⎡

⎢⎣
γ10
...

γM0

⎤

⎥⎦ + · · · +
⎡

⎢⎣
W1L Z

. . .

WML Z

⎤

⎥⎦

⎡

⎢⎣
γ1L
...

γML

⎤

⎥⎦

+
⎡

⎢⎣
V1

. . .

VM

⎤

⎥⎦

⎡

⎢⎣
δ1
...

δM

⎤

⎥⎦ +
⎡

⎢⎣
ε1
...

εM

⎤

⎥⎦ ,

⎡

⎢⎣
ε1
...

εM

⎤

⎥⎦ ∼ N (0,Σ ⊗ In) . (10)

Here, n = ∑N
i=1 Ti is the number of all observations with respect to one brand

m (observations, i.e., weeks and stores, are the same across brands). Xmj (m, j =
1, . . . , M) corresponds to the design matrix for the j th price effect of brand m with
elements Xmj (g, o) = Bmjo(x jg) where Bmjo is the oth B-spline basis function for
the j th nonparametric effect of brandm and x jg denotes the gth observation of the j th
price variable. Amj = diag(1+ αmi1 j , . . . , 1+ αmin j ) (m, j = 1, . . . , M) constitutes
an n×n diagonal matrix of random scaling factors where ig ∈ {1, . . . , N } denotes the
store to which the g-th observation belongs. Wml (m = 1, . . . , M and l = 0, . . . , L)
is an n× n diagonal matrix of the observations which belong to the lth parametrically
and store-specifically modeled variable (withWm0 being an n×n identity matrix), and
Z is a matrix indicating if observation g belongs to store i (in this case Z (g, i) equals
1, otherwise it equals 0). Finally, Vm (m = 1, . . . , M) is the usual design matrix for
the homogeneous parametric effects of brand m.

To accomplish the Bayesian specification, the random scaling factors contained
in αmj = (αm1 j , . . . , αmN j )

′ as well as the store-specific parametric effects γml =
(γm1l , . . . , γmNl)

′ are a priori assumed to be multivariate normal distributed with
N (0, φ2

mj In) and N (0, ψ2
ml In), respectively. The variance parameters φ2

mj (m, j =
1, . . . , M) of the multiplicative random effects and ψ2

ml (m = 1, . . . , M and l =
1, . . . , L) of further additive random effects are supplemented with inverse gamma
priors IG(0.001, 0.001). Inverse gamma priors IG(0.001, 0.001) are also assigned to
all variance parameters τ 2mj (m, j = 1, . . . , M) which control the amount of smooth-
ness of the P-splines (Brezger and Steiner 2008). Choosing the value 0.001 for both
hyperparameters of the inverse gamma distribution leads to noninformative priors for
all variance parameters. A diffuse prior δ ∝ const is used for the parameter vector
δ = (δ1, . . . , δM )′ and an inverse Wishart distribution IW (1, 0.005IM ) is placed on
the covariance matrix Σ .

Note, that the proposed model reduces to a homogeneous semiparametric SUR
model similar to that of Lang et al. (2003) if αmi j = 0 for m, j = 1, . . . , M and
i = 1, . . . , N , and γmil = γml for m = 1, . . . , M , i = 1, . . . , N and l = 1, . . . , L , to
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a hierarchical Bayesian parametric SUR model if all nonlinear functions fmj , m, j =
1, . . . , M , are replaced by linear effects, and to a simple homogeneous parametric
SUR model if both αmi j = 0 for m, j = 1, . . . , M and i = 1, . . . , N , γmil = γml
for m = 1, . . . , M , i = 1, . . . , N and l = 1, . . . , L , and all nonlinear functions fmj ,
m, j = 1, . . . , M , are replaced by linear effects (compare Eq. (7)).

Estimation is fully Bayesian. Details on Bayesian inference are provided in Appen-
dix 2.

2.2 Optimal category pricing

The main objective of a retailer is to maximize the chain-level profit Πt of a product
category in each week6 t (e.g., Chintagunta et al. 2003; Hruschka 2007; Khan and Jain
2005; Kim et al. 1995; Montgomery and Bradlow 1999; Vilcassim and Chintagunta
1995) which is given by

Πt =
M∑

m=1

N∑

i=1

(priceoptmit − cmt )Q̂mit (p
opt
i t ). (11)

Here, cmt denotes the wholesale cost of brand m in week t and Q̂mit are the predicted
unit sales of brand m in store i and week t which depend on the (optimal) prices
of all brands. Thus, optimal prices popti t = (priceopt1i t , . . . , price

opt
Mit ) are determined

for each store i , i = 1, . . . , N , in a given week t . To compare pricing scenarios
at different levels of aggregation (chain-level vs. segment-level vs. store-level) and
following Hruschka (2007), we define

priceoptmit =
K∑

k=1

1(Si = k)priceoptmkt , m = 1, . . . , M, i = 1, . . . , N . (12)

Accordingly, the optimal price priceoptmit of store i is equal to the optimal price priceoptmkt
of segment k if store i belongs to segment k indicated by 1(Si = k) (segment-level
pricing). If there is only one segment, i.e., K = 1, optimal prices are the same for all
stores of the retail chain (chain-level or uniform pricing). If the number of segments
is equal to the number of stores, i.e., K = N , optimal prices vary across stores7

(store-level pricing or micromarketing).
We further account for model uncertainty when determining optimal prices. In

particular, expected profits in week t are considered as the arithmetic mean across U
Gibbs samples of coefficients8 (e.g.,Hruschka2007;Montgomery1997).Accordingly,
the expected profit of the whole product category in week t can be written as

6 According to, e.g., Chintagunta et al. (2003), Kadiyali et al. (2000) and Sudhir (2001), retailers (as well
as manufacturers) make their pricing decisions every week.
7 Note that store-specific or micromarketing pricing strategies can be derived not only from the hierarchical
Bayesian SUR model but also from the general heterogeneity SUR model since price coefficients are store-
specific in the latter model as well.
8 We set U = 200.
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E[Πt ] = 1

U

U∑

u=1

M∑

m=1

N∑

i=1

(priceoptmit − cmt )Q̂
u
mit (p

opt
i t ) (13)

where Q̂u
mit (p

opt
i t ) are the predicted sales of brand m in store i and week t computed

by using the coefficient sample drawn in iteration u of the Gibbs sampling algorithm
(after the burn-in period) instead of estimates of conditional means. Since there are
no interactions between segments or stores (Montgomery 1997), optimization can be
done separately for each segment or store, respectively. Therefore, we rewrite Eq. (13)
as

E[Πt ] =
K∑

k=1

E[Πkt ], (14)

where

E[Πkt ] = 1

U

U∑

u=1

M∑

m=1

N∑

i=1

1(Si = k)(priceoptmkt − cmt )Q̂
u
mit (p

opt
kt ). (15)

Finally, total expected profits result by summing over weeks t = 1, . . . , 89:

E [Π ] =
89∑

t=1

E [Πt ] . (16)

According to Hruschka (2007), Khan and Jain (2005) and Montgomery (1997), the
average price level of the product category (after brand prices were optimized) should
not deviate too much from its currently observed level in order to leave the retailer’s
image unchanged. In all three studies, price levels are defined as the market share
weighted average price across all brands in the product category. Contrary to them, we
consider the retailer’s current price image as the simple (unweighted) average price
across all brands in the product category which reflects the price structure as perceived
by consumers. While Hruschka (2007) accounts for that price level restriction at the
store-level, Khan and Jain (2005) and Montgomery (1997) impose this constraint at
that level at which pricing decisions are made. Here, we require that optimized price
levels (chain-, segment- and store-level) must not deviate too much from the average
observed price level across all stores of the chain in a given week t which can be
written as

plobst = 1

N

N∑

i=1

1

M

M∑

m=1

pricemit , (17)

where pricemit is the observed price of brand m in store i and week t .
The new price level of segment k in a given week t based on optimal prices can be

defined as
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plnewkt (poptkt ) = 1

M

M∑

m=1

priceoptmkt . (18)

Note that the price level is the same for all stores of segment k since optimal prices
are the same, as well. If there is only one segment we receive the same price level for
all stores of the chain and if there are as much segments as stores store-specific new
price levels result.

Montgomery (1997) claims that observed and new price levels have to be equal
which is a really severe restriction. Khan and Jain (2005) constrain the new price
levels to be smaller than or at least equal to the observed ones. Similar to Hruschka
(2007), we allow for small deviations between new and observed price levels. In
particular, we constrain new price levels to deviate not more than 1 % from observed
price levels in a considered week:

akt := max

(
1 − plnewkt (poptkt )

plobst

, 1 − plobst

plnewkt (poptkt )

)
≤ 0.01 (19)

Finally, optimal prices for a certain brand are assumed to lie within the price range as
observed for this brand.

The inequality constraints (19) are incorporated into the optimization procedure by
using an objective function including a penalty function (e.g., Weicker 2007). Hence,
we obtain the following maximization problem for segment k (k = 1, . . . , K ) in week
t (t = 1, . . . , 89):

max
poptkt

Z =
{
E [Πkt ] , if akt ≤ 0.01

−10000, otherwise
(20)

subject to min
i,t

{pricemit } ≤ priceoptmkt ≤ max
i,t

{pricemit } , m = 1, . . . , M.

Since it is common practice that retailers base their pricing decisions on a sales
promotion calendar (e.g., Silva-Risso et al. 1999), optimization is carried out condi-
tionally on the given promotional strategy (e.g., Chintagunta et al. 2003; Kim et al.
1995), relating to the use of displays in our data. Of course, it would also be possible to
determine optimal prices and expected profits for different scenarios of display usage.
Thus, the explanatory power of our study is not limited from a managerial point of
view (Vilcassim and Chintagunta 1995).

3 Empirical application

3.1 Data and variable specification

The data set used for estimation comes from a major supermarket chain named
Dominick’s Finer Foods (DFF) in the Chicago metropolitan area and was provided
by the James M. Kilts Center, University of Chicago. It refers to eight brands of the
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refrigerated orange juice category and contains weekly collected observations from 81
stores over a time span ranging from 67 to 85 weeks including unit sales, retail prices
and display activities for the various brands9 (Brezger and Steiner 2008; Steiner et al.
2007). Descriptive statistics are summarized in Table 1.

The mean prices indicate the differences in quality across the three quality tiers of
premium brands (Florida Natural and Tropicana Pure), national brands (Citrus Hill,
Florida Gold, Minute Maid, Tree Fresh and Tropicana) and the supermarket’s private
label brand (Dominick’s). Thus, the premium brands are the most expensive brands
and the private label brand Dominick’s is the cheapest brand. The same applies to the
mean costs (wholesale costs) which significantly differ across the three quality tiers,
as well. Price and cost variation of a brand in one store are measured by the coefficient
of variation which corresponds to the ratio of the standard deviation of actual prices
or costs and the mean actual price or cost, respectively (Bolton and Shankar 2003;
Shankar and Krishnamurthi 1996). Averages of the coefficients of variation across
stores are provided in Table 1, too. From the third and fifth column, it becomes evident
that prices as well as costs are substantially different over time. Moreover, DFF varies
prices of a brand across stores in most weeks setting up to 27 different price levels
across the 81 stores. On average five different price levels of a brand are found in
one week while weekly wholesale costs are nearly constant across stores. Finally, we
investigated the pricing behavior of DFF. In Table 1, the correlations between prices
and costs are displayed for the various brands. Correlations are rather small for the
premium brand Florida Natural as well as the store brand Dominick’s and moderate
for the remaining brands. This finding indicates that DFF does not use a simple cost
plus approach for setting prices.

To avoid the problem of multicollinearity, cross-item price effects are specified at
the tier level. Precisely, we define new independent variables price_nationalit and
price_premiumit capturing the lowest price of any competing national or premium
brand in store i and week t , respectively, while price_privateit corresponds to the
price of the only private label brand Dominick’s.10 Furthermore, 9- (end9) and 99-
ending (end99) own-item price effects are taken into account. Hence, within our
SUR framework and exemplarily for the general heterogeneity SUR model, the sales
response model of one brand in store i and week t is given by11:

ln Qit = γi0 + βi1 · ln (priceit ) + βi2 · ln (price_premiumit )

+βi3 · ln (price_nationalit ) + βi4 · ln (price_privateit )

+ γi1 · displayit + γi2 · end9i t + γi3 · end99i t + δ · Et + εi t . (21)

Note that the term βi4 · ln (price_privateit ) has to be omitted if the sales equation
is specified for the private label brand Dominick’s.

9 Originally, the data is provided at the UPC-level and consists of 18 UPCs. In order to handle this number
of products we aggregated highly correlated UPCs to 8 brands accounting for a market share of about 96 %
in the refrigerated orange juice category (64 oz) during the considered time span.
10 For details compare Steiner et al. (2007, p. 387).
11 The notation which is not explained here is adopted from model (1).
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3.2 Benchmark models and model performance

We estimate all versions of the general heterogeneity SUR model as well as the hier-
archical Bayesian semiparametric SUR model and its nested homogeneous version,
i.e., we estimate

1. a parametric homogeneous12 SUR model (PHomSM) that constrains marketing
effects to be equal across stores,

2. a parametric latent class SURmodel (PLCSM)with different numbers of segments
(two to six) yielding segment-specific marketing effects,

3. a parametric hierarchical Bayesian SUR model (PHBSM) that reveals store-
specific marketing effects,

4. a parametric general heterogeneity SUR model (PHetSM) with two segments13

allowing for heterogeneous store-specific marketing effects within segments,
5. a flexible (semiparametric) homogeneous SUR model (FHomSM) that allows for

flexible nonlinear price effects which are equal across stores, and
6. a flexible hierarchical Bayesian semiparametric SUR model (FHBSM) providing

store-specific nonlinear price effects.

Comparison of estimation results is based on model fit in terms of the deviance
information criterion (Fahrmeir et al. 2007) and the log model likelihood (Frühwirth-
Schnatter 2006; Rossi et al. 2005), predictive performance measured by the root mean
squared sales prediction error (RMSE), estimated price elasticities as well as esti-
mated price effects. To assess the predictive validity, we randomly split the data
(of each store) into an estimation sample including about 75 % of the observations
and a validation sample for the remaining 25 % of observations, and subsequently
computed the RMSE values in both the estimation (in-sample RMSE) and the val-
idation sample (out-of-sample RMSE). Finally, expected profits and optimal prices
are obtained by determining the solution of the maximization problem (20). This
provides uniform prices equal across stores for the homogeneous SUR models
(PHomSM, FHomSM), segment-specific prices equal within segments for the latent
class SUR model (PLCSM), and store-specific prices for the heterogeneous SUR
models (PHBSM, PHetSM, FHBSM). The optimization procedure is based on an evo-
lutionary algorithmwith a derivative-based (quasi-Newton) method (called GENOUD
= GENetic Optimization Using Derivatives) which is implemented in the statistical
software R14 (see Sekhon and Mebane 1998 for the description of the algorithm and
Mebane and Sekhon 2011 for details about the implementation in R using the function
genoud() of the R package rgenoud). More details about the evolutionary algorithm,
the specification of the arguments of the functiongenoud() that control its performance,
and the size of our optimization problems are given in Appendix 4.

12 Homogeneity refers to the effects of all independent variables. The model, however, contains store-
specific intercepts in order to account for differences in baseline sales across stores (like all other models
do). A table summarizing all model specifications is given in Appendix 3.
13 We will explain below why we abstain from estimating the PHetSM for a higher number of segments.
14 The software R is free and available at http://cran.r-project.org/.
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Table 2 Fit and predictive validity for all SUR model versions (number of segments in parentheses)

Model DIC logML Out-of-sample
RMSE

Out-of-sample
improvement (%)

In-sample
improvement (%)

PHomSM 99446 −52474 146 − –

PLCSM (2) 98988 −52516 147 0.36 −0.50

PLCSM (3) 99282 −52863 147 0.49 −0.97

PLCSM (4) 99230 −53059 147 0.69 −0.98

PLCSM (5) 99236 −53208 147 0.64 −1.04

PLCSM (6) 99316 −53431 149 1.49 −1.32

PHBSM 99184 −52464 147 0.39 −3.58

PHetSM (2) 100973 −55329 161 9.74 −6.03

FHomSM 93499 – 138 −5.73 −9.26

FHBSM 91730 – 131 −10.48 −16.01

3.3 Estimation results

Fit and predictive validity The estimation results of our models are provided in Table 2
(with best models indicated in bold). With respect to model fit measured in terms of
the deviance information criterion (DIC) and the log model likelihood (logML), the
less complex parametric SURmodels clearly outperform PHetSM, with PLCSMwith
two segments and PHBSM being the best models, respectively. This finding can be
explained as follows: First, although PHetSM is the most flexible parametric model
the DIC as well as the model likelihood penalize for model complexity (Frühwirth-
Schnatter 2006; Spiegelhalter et al. 2002) leading to a larger (worse) DIC value and a
smaller (worse) logML-value, respectively. Second, thePHetSM two-segment solution
yields one empty segment with no stores assigned to it and a corresponding estimated
segment size of almost zero. For that reason, we did not increase the number of
segments for that model. Hence, according to this most complex parametric SUR
model the data do not support two (or more) segments with additional inner-segment
variation.We therefore exclude this model in the subsequent analyses. The differences
in DIC values as well as logML-values between the less complex parametric model
versions are, moreover, rather moderate. The flexible SUR models, however, lead to
a considerably better model fit compared to the parametric models providing much
smaller DIC values.15

Concerning predictive validity, PHomSM turned out to be the best parametric
model. Again, differences between the parametric model versions are rather small.
In contrast, predictive validity could be improved considerably by FHomSM and
FHBSM with impressing relative improvements of about 6 and 10 % compared to
PHomSM, respectively.

15 It is not possible to compute the log model likelihood for the flexible models since this measure of fit
is not applicable in models with improper priors as are used for the nonlinear functions of FHomSM and
FHBSM.
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Analysis of in-sample improvements of RMSE values over PHomSM reveals that
the more complex the model the better is the in-sample fit. This finding is reasonable
since this measure of fit ignores model complexity. Combining the results of in- and
out-of-sample performance in terms of RMSE values we can conclude that the more
complex parametric model versions, especially the PHetSM two-segment model, lead
to overfitting.

Taking a closer look at the predictive performance of the various models at the
brand-level which is summarized in Table 3 we find that the incorporation of hetero-
geneity into a parametric model can lead to small improvements in RMSE values for
some brands. In particular, PHBSM reveals a slightly better predictive validity than
PHomSM for 6 out of 8 brands. However, the predictive performance of PHBSM
is considerably worse for the national brands Citrus Hill and Florida Gold. PHetSM
fails to provide better results than PHomSM for all brands supporting the overfitting
argument at the brand-level, too. In contrast, allowing for functional flexibility yields
substantial improvements for nearly all brands (except Citrus Hill16). Importantly,
combining heterogeneity and functional flexibility enables a still much better predic-
tive accuracy for all brands except for Tropicana. Lang et al. (2015) have recently
illustrated why addressing heterogeneity alone in a store sales model may not be suf-
ficient to improve the predictive performance substantially (if at all), and that one may
need nonlinearity (functional flexibility) in the model before one can find evidence
for heterogeneity. The reason for this phenomenon is that parametric models may
be simply not able to capture the strong nonlinearity in price response contained in
sales data. As a consequence, this reason is also responsible for the observation that
the more complex heterogeneity specifications considered here result in overfitting,
as far as parametric models are concerned (due to the lack of functional flexibil-
ity, the models do not get better by accommodating more heterogeneity or different
representations of heterogeneity). In contrast, once nonlinearity has been considered
(FHomSM), accounting for heterogeneity can provide an additional improvement in
predictive accuracy (FHBSM).

Altogether, the findings demonstrate that the consideration of heterogeneity in a
parametric SUR model leads to only small improvements in fit and predictive validity
whereas the accommodation of functional flexibility solely as well as accounting for
both features reveals a superior model fit and forecasting accuracy. In the subsequent
analysis, we will show that the superiority of the flexible models can be explained by
the fact that complex nonlinearities in price response exist which cannot be captured
adequately by the parametric models.
Price elasticities Table 4 shows posterior estimates of segment-specific price coeffi-
cients of the parametric SUR models contained in βG

k (compare equation (5)) which
correspond to mean price elasticities since the underlying model (1) is a multiplicative
model. Mean price elasticities resulting from PHomSM and PHBSM do not differ

16 For Citrus Hill, PHomSM reveals a sum of absolute errors of 46912, FHomSM a much smaller one of
44230. The considerably worse RMSE value of FHomSM can be traced back to one single week in the
validation sample that obtains a much higher weight in case of squared errors as compared to absolute
errors. In order to stay conservative with this flexible model, we omit this week later in our comparison of
expected profits across models.
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Table 4 Mean price elasticities of the SUR model versions

Brand PHomSM PHBSM PLCSM 2-segment

Segment 1 Segment 2

FN −3.52 −3.52 −3.81 −3.28

TP −2.85 −2.87 −3.17 −2.61

CH −3.73 −3.76 −4.21 −3.36

FG −3.61 −3.58 −3.90 −3.40

MM −3.29 −3.28 −3.41 −3.23

TF −2.44 −2.52 −2.72 −2.23

T −3.50 −3.42 −3.71 −3.34

D −3.69 −3.70 −4.02 −3.45

Brand FHomSM FHBSM

Mean I1 I2 I3 Mean I1 I2 I3

FN −3.88 −0.59 −4.63 −3.53 −3.86 −0.95 −4.71 −3.39

TP −2.74 −2.71 −3.40 −2.38 −2.76 −3.20 −3.38 −2.40

CH −3.70 −6.73 −3.61 −1.92 −3.66 −7.31 −3.57 −1.43

FG −3.79 −5.30 −3.30 −2.38 −3.93 −5.45 −3.48 −2.07

MM −3.25 −2.38 −3.57 −2.70 −3.18 −2.28 −3.53 −2.44

TF −1.61 −3.62 −1.49 −1.37 −1.40 −2.95 −1.32 −1.12

T −3.44 −3.70 −3.29 −5.91 −3.31 −3.43 −3.22 −5.11

D −3.32 −2.68 −3.83 −11.32 −3.32 −2.69 −3.81 −11.69

I1: ≤1.50$; I2: (1.50$; 2.50$]; I3: >2.50$

significantly which is supported by their overlapping 95 % credible intervals (not
displayed). Furthermore, these elasticities lie in-between the mean segment-specific
elasticities obtained from the two-segment PLCSM. Indicated by 95 % credible inter-
vals, they significantly differ from segment-specific elasticities in case of Tropicana
Pure, Citrus Hill, Tree Fresh (this applies only for the elasticities resulting from
PHomSM) and Dominick’s. For seven out of eight brands, credible intervals of the
two segment-specific coefficients suggested by PLCSM do not overlap indicating that
differences in price response between the two segments really exist (the only exception
is the national brand Minute Maid). In contrast, we do not find significant differences
in store-level price elasticities resulting from PHBSM since credible intervals pairwise
overlap across all stores. Moreover, store-level coefficients do not significantly differ
from the mean price effect across stores since credible intervals overlap, too.

While the price elasticities of the parametric SUR models are constant over the
whole price range, FHomSM and FHBSM reveal different price elasticities for dif-
ferent price levels. Specifically, we divided the observed price range into a low (I1),
a medium (I2) and a high price interval (I3) and computed mean price elasticities for
each interval as well as for the entire price range. The results are displayed in Table 4,
as well. Interestingly, the overall mean price elasticities suggested by FHomSM and
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FHBSM are quite similar to those suggested by PHomSM. Only the price elastici-
ties of Tree Fresh resulting from the flexible models turn out to be clearly lower (in
absolute terms) than that resulting from PHomSM. In contrast, if we take a look at
the mean price elasticities within the three price intervals we find considerable dif-
ferences compared to the overall mean especially in the low and high price intervals.
For example, the premium brand Florida Natural even reveals an inelastic demand
in the low price interval while demand is elastic in the medium and high price inter-
vals. Price elasticities are further particularly high (in absolute terms larger than 5)
in the low price interval for Citrus Hill and Florida Gold and in the high price inter-
val for Tropicana and Dominick’s.17 While mean price elasticities resulting from the
flexible models are quite similar in the medium price interval we find noticable dif-
ferences in the low and high price intervals. Furthermore, price elasticities obtained
from FHBSM significantly vary across stores indicated by the number of coefficients
that significantly differ from mean price elasticities (at most 40 %). Altogether, we
find that differences in mean price elasticities turned out much larger across different
price ranges (FHomSM, FHBSM) than across stores (PHBSM, PLCSM, FHBSM).
Hence, this kind of variation of price elasticities seems to play a more important role
when modeling price response than differences in price elasticities across stores or
groups of stores. However, variation of price elasticities across stores becomes more
relevant if functional flexibility is already accounted for. These findings are further in
line with the results on predictive performance which could be improved considerably
by accommodating functional flexibility only as well as by accommodating functional
flexibility and heterogeneity jointly while only slightly or not at all by accounting for
heterogeneity only (compare Tables 2 and 3).

With respect to the remaining model parameters, estimated holiday effects turned
out to be negative for the national brandsMinuteMaid and Tropicana as well as for the
store brand. Apparently, these brands are less preferred in weeks with a holiday. This
effect is further not significant at 5% for the premiumbrand FloridaNatural (FHomSM
and FHBSM additionally reveal a nonsignificant holiday effect for Florida Gold). For
the remaining brands, the model versions reveal significant positive holiday effects.
Estimated display effects are positive as expected for all national brands, not significant
for the premium brand Florida Natural as well as for the store brand Dominick’s,
and slightly negative for the premium brand Tropicana Pure. 9- and 99-ending price
effects turned out to be positive and (mostly) significant for all premium and national
brands. FHomSM even suggests positive and significant price ending effects for all
brands while the parametric model versions yield a negative 99-ending effect for
Dominick’s and a nonsignificant 99-ending effect for Tree Fresh. FHBSM reveals
nonsignificant 99-ending effects for Florida Gold and Dominick’s. These findings
indicate the importance of involving price ending effects in price response models and
in particular for related price setting decisions.
Estimated price effects Figure 1 illustrates estimated own-item price effects for the
brands Florida Gold, Tree Fresh and Tropicana Pure representing 3 of the 4 brands

17 Please note that the high price interval consists of only one observed price in case of the store brand
Dominick’s. Hence, the respective price elasticity (in absolute terms) is probably overestimated for high
prices of Dominick’s.
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Fig. 1 Estimated own-item price effects resulting from PHomSM (dotted line in gray), PLCSM (dotted
line in black), FHomSM (long dashed line in gray) and FHBSM (median scaling: solid line, maximum
scaling: dashed-dotted line in black)
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which benefitted most from accommodating heterogeneity and functional flexibility
(compare Table 3). Estimated price response curves of PHomSM are represented by
dotted lines in gray, those of PLCSM by short dotted lines in black (one curve for each
segment), and those of FHomSM by long dashed lines in gray. In order to illustrate
the amount of store heterogeneity for the retail chain, we further show estimated price
effects of FHBSM for that store which exhibits the median of estimated scaling factors
(solid line in black) aswell as that storewhich exhibits the highest absolute value across
estimated scaling factors (dashed-dotted line in black). Thus, the former illustrates an
“average” store while the latter deviates most in price response from the “average”
store. For a clear presentation, we abstain from plotting price response curves obtained
from PHBSM since mean price elasticities are similar to those of PHomSM (compare
Table 4) and store-specific price elasticities do not differ significantly across stores (see
above). To investigate the functional forms of the estimated own-item price effects we
show marginal price effects. Thus, we do not display odd price effects which would
appear as sales spikes at prices ending in 9 or 99 cents. The tick marks along the base
of the plots indicate the actual price levels set by DFF.

The parametric SUR models are exponentially decreasing price response func-
tions by definition. Differences between the own-item price effects resulting from
PHomSM and PLCSM are (if at all) rather small and only apparent in the low price
range. The comparison of own-item price effects obtained from the two flexible SUR
models reveals that they exhibit quite similar functional forms for each brand although
FHomSM and FHBSM were estimated independently from each other. In particular,
the price effect of FHomSM nearly coincides with that of FHBSM for the “average”
store. The flexible SUR models yield L-shaped functions for Florida Gold (panel (a))
and a mixture of L- and reverse s-shaped functions for Tree Fresh (panel (b)). That
way, threshold effects become visible indicating the potential for increasing sales
below those price thresholds. For Tropicana Pure (panel (c)), the flexibly estimated
price effects show a convex decreasing shape which is quite similar to the shape of
the parametric price effects. In the low price range FHomSM as well as FHBSM (for
the “average” store) suggest considerably larger sales than the parametric SUR mod-
els for all brands while differences are rather marginal for high prices. However, the
price response curves resulting from FHBSM are heterogeneous across stores which
becomes particularly evident from the price effects for the store corresponding to the
maximum scaling factor (FHBSM (max.)) that in part considerably deviate from the
price effects obtained for the “average” store (FHBSM (med.)), respectively.

Figure 2 exemplifies selected cross-item price effects. For Florida Gold, estimated
price response functions with respect to the observed prices of competing brands in the
national quality tier are shown (panel (a)). While the parametric SUR models provide
almost linearly increasing cross-item price effects the flexible SUR models reveal a
mixture of an s- and reverseL-shaped function. Especially in the upper price range sales
of Florida Gold are considerably affected if one or more national brands reduce their
prices. Moreover, threshold effects indicate that a certain amount of price reduction
is necessary to further decrease sales of Florida Gold. The cross-item price effects of
Tree Fresh with respect to observed prices of the other brands in the national quality
tier exhibit s-shaped functions for the flexible SUR models (panel (b)) indicating a
threshold effect as well. Accordingly, in the upper price interval above 2.70$ price cuts
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Fig. 2 Estimated cross-item price effects resulting from PHomSM (dotted line in gray), PLCSM (dotted
line in black), FHomSM (long dashed line in gray) and FHBSM (median scaling: solid line, maximum
scaling: dashed-dotted line in black)
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Table 5 Optimization results based on the profit function of FHBSM

Expected profits Loss Expected sales

Actual profit 2390363 4694096

E
[
Π

(
p∗
FHBSM

)]
3564031 6304084

E
[
Π

(
p∗
PHomSM

)]
3370934 −5.42 5892175

E
[
Π

(
p∗
PHBSM

)]
3271465 −8.21 5729485

E
[
Π

(
p∗
PLCSM

)]
3169675 −11.06 5560485

E
[
Π

(
p∗
FHomSM

)]
3543383 −0.58 6271742

of the competing national brands have almost no impact on the sales of Tree Fresh.
In contrast, if the price of a competing national brand falls below the threshold sales
of Tree Fresh considerably decrease, especially within the price range from 2.50$ to
2.70$. The cross-item price effect of Florida Natural on Tropicana Pure (panel (c))
resembles that of the national brands on Tree Fresh (panel (b)). Again, we observe
in part considerable differences in estimated cross-item price effects obtained from
FHBSM at the median versus maximum scaling factor levels (see in particular panel
(a)).

From the own- and cross-item price response curves considered here it becomes
particularly apparent that complex nonlinearities in price response are existent which
cannot be reproduced appropriately by parametric models on the one hand and that
differences across stores are present on the other hand, which explains the superior
predictive validity of the flexible (and heterogeneous) semiparametric SUR models
once more (compare Tables 2 and 3).

3.4 Optimization results

Optimal prices were determined for all model versions and are denoted by p∗
PHomSM ,

p∗
PHBSM , p∗

PLCSM , p∗
FHomSM and p∗

FHBSM . To obtain comparable results, we then
plugged those optimal prices into the profit function of the model with the highest
predictive validity,18, i.e., into the profit function of FHBSM (compare Table 2). As an
example, consider that we plug p∗

PHomSM (computed under PHomSM) into Eq. (13)
where the predicted unit sales are calculated using the parameter samples of FHBSM.
Hence,we compute the total expected profit E[Π(p∗

PHomSM )] for the flexible FHBSM
but use p∗

PHomSM instead of p∗
FHBSM . That way, we are able to measure the loss

management incurs by not using the model with the best predictive performance
(Hruschka 2006b). Table 5 reports the corresponding results for all model versions.

As a first result, we can observe that actual profits (computed by using actual sales)
could be increased considerably by each model version. Optimizing prices led to
expected profits which are substantially larger than actual profits obtained by DFF.
In comparison with expected profits resulting from FHBSM, the parametric models

18 According to vanHeerde et al. (2002), one should choose themodelwith the best predictive performance.
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reveal substantial losses ranging from about 6 to 11 %. The smallest loss is associated
with PHomSM, while the more complex parametric heterogeneous models PLCSM
and PHBSM suffer from still higher losses.19 In contrast, expected profits resulting
from FHomSM and FHBSM, respectively, do not differ to a noticable extent. Thus,
the flexible models promise huge potential for increasing profits compared to each
parametric model.

We further computed expected unit sales based on FHBSM (also shown in Table 5),
which were obtained by plugging the optimal prices of each model (one at a time)
into the sales equation of FHBSM. According to Natter et al. (2007), it is possible
that increased expected profits are accompanied by decreased unit sales. Our results
do not confirm the finding of Natter et al. (2007) since expected unit sales could be
increased considerably by all model versions compared to the observed unit sales of
DFF. Moreover, we find for each model version that the larger expected profits the
larger expected unit sales are.

Brand-level optimization results averaged across weeks are summarized in Table 6
(with best values of expected profits indicated in bold). Comparison of observed
prices and optimized prices reveals that prices on average should be increased for
the national brands Florida Gold, Minute Maid, Tree Fresh and Tropicana (as well
as for the premium brand Florida Natural according to the parametric SUR models)
and decreased for the premium brand Florida Natural (according to the flexible SUR
models), the national brand Citrus Hill as well as for the store brand Dominick’s.
Remember that the average price level of the product category is maintained in a given
week (compare Eq. (19)). Thus, price increases of some brands had to be offset by
price decreases of other brands in the product category. Average margins across weeks
and stores could not be enhanced for Citrus Hill (and Florida Natural according to the
flexible SURmodels). Average weekly market shares could be increased considerably
for DFFs own store brand, while they would clearly decrease for the premium brand
Tropicana Pure and the national brand Minute Maid according to all model versions,
respectively. Due to the higher margin, expected profits could however be improved
for Minute Maid. Besides Tropicana, expected profits would also increase for all
other national brands (except for Florida Gold according to PLCSM), and for the
premium brand Florida Natural according to the flexible models. Furthermore, we
can observe that optimization results are mixed across models at the brand-level. In
particular, while FHBSM provides the largest expected profit at the category level
this (on average) holds for only four brands at the brand-level. Nevertheless, expected
profits obtained from FHBSM are rather similar to those obtained from FHomSM
which provides the largest expected profits for two further brands. For Tropicana Pure
and Tropicana, however, PLCSM yields the largest expected profits.20 Altogether, the

19 For the sake of completeness, we further determined store-specific optimal prices based on the latent
class model PLCSM and the general heterogeneity model PHetSM (note that this model revealed one empty
segment) and plugged them into the profit function of FHBSM. Relative to expected profits of FHBSM,
optimal prices obtained from these two models result in losses of about 8 % in case of PLCSM and 10 %
in case of PHetSM.
20 Note that based on the profit function of FHBSM optimal prices of this model have to provide the largest
expected profit for the whole product category in each week. Nevertheless, optimal prices of the other
models can lead to better results at the brand-level for some brands.
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Table 6 Brand-level optimization results

Brand

FN TP CH FG MM TF T D

Observeda 2.85 2.94 2.32 2.18 2.22 2.16 2.19 1.76

0.32 0.28 0.24 0.32 0.24 0.29 0.29 0.30

4 12 7 6 10 8 18 35

1704 4051 1478 2259 1771 2127 4267 9506

PHomSMa 2.87 2.91 2.26 2.23 2.27 2.31 2.21 1.70

0.33 0.29 0.23 0.35 0.28 0.34 0.31 0.30

3 8 8 5 7 5 17 46

1616 3966 2374 4053 2664 2489 6896 14250

PHBSMa 2.89 2.93 2.25 2.22 2.28 2.29 2.22 1.70

0.33 0.29 0.22 0.34 0.28 0.33 0.31 0.30

3 8 8 5 7 6 17 46

1645 3979 2376 3087 2681 2464 6841 14105

PLCSMa 2.92 2.95 2.23 2.21 2.27 2.29 2.20 1.69

0.34 0.30 0.22 0.34 0.27 0.33 0.30 0.30

3 8 9 5 7 5 18 46

1618 4013 2433 2024 2681 2440 6898 13911

FHomSMa 2.85 2.94 2.26 2.21 2.25 2.28 2.24 1.74

0.32 0.29 0.23 0.34 0.26 0.33 0.32 0.31

4 8 8 5 7 6 16 46

1864 3803 2428 4761 2706 2689 6837 15176

FHBSMa 2.80 2.93 2.28 2.21 2.26 2.29 2.25 1.76

0.31 0.28 0.23 0.34 0.27 0.33 0.32 0.32

4 8 7 6 7 7 16 45

2198 3801 2442 4753 2765 2877 6778 14885

a 1. Row Average prices across weeks and stores, 2. Row Average margins across weeks and stores, 3. Row
Average market shares across weeks for all stores of the chain, 4. Row Average profits across weeks for all
stores of the chain

brand-level results (on average) as well suggest the relative superiority of both flexible
SUR model versions with respect to expected profits.

Pricing implications resulting from the different model versions are exemplified in
Fig. 3 for the national brand Tree Fresh which benefitted considerably from accom-
modating heterogeneity and functional flexibility in terms of both predictive validity
(compare Table 3) and expected profits (compare Table 6). For PHBSM and FHBSM,
store-specific optimal prices are shown for each week while PLCSM yields segment-
specific optimal prices. We further display (store-specific) actual prices of DFF in
each week as indicated by the gray-shaded triangles. Optimal price levels resulting
from PHomSM coincide with those for (at least) one segment obtained from PLCSM
in about 50 % of the weeks. PHBSM provides up to 25 different price levels across
stores. But taking a closer look leads to the conclusion that the most frequent price
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Fig. 3 Optimal prices for Tree Fresh based on PHomSM, PHBSM, PLCSM (with 2 segments), FHomSM
and FHBSM
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levels obtained from PHBSM coincide with those obtained from PHomSM in 42 %
and with those obtained from (at least) one segment of PLCSM in about 57 % of
the weeks. In contrast, the flexible homogeneous SUR model reveals the same price
levels as PHomSM in only 27 % of the weeks, and the most frequent price levels
resulting from FHBSM coincide with those of PHomSM only in about 29 % of the
weeks. Interestingly, while DFF actually sets on average three different price lev-
els across stores for Tree Fresh the heterogeneous model versions suggest a more
differentiated pricing strategy with on average about 14 different price levels across
stores.

Differences in optimal prices between the various model versions become particu-
larly evident if we simultaneously consider optimal prices of all brands of the product
category. Then, optimal category pricing resulting from PHomSM is different from
that under FHomSM in all weeks and corresponds to that for at least one store under
FHBSM in only 10 weeks. Optimal category pricing under PHomSM coincides with
that for one segment under PLCSM in only 9 weeks, and PHBSM and FHBSM yield
on average (across weeks) a store-specific category pricing different from PHomSM
in about 71 and 65 % of the stores, respectively. In contrast, a similar optimal category
pricing is obtained from FHomSM and for at least one store from FHBSM in 56 %
of the weeks thus explaining the smaller difference in expected profits between the
flexible model versions.

4 Summary and discussion

The present study deals with the comparison of different approaches for modeling
price response from store sales. Several heterogeneous parametric response mod-
els are contrasted with a homogeneous and a heterogeneous flexible approach, and
brand sales and profits are modeled simultaneously for all brands in a product category
within a SUR regression framework. In particular, we compare a general heterogeneity
SUR model (PHetSM) and its nested heterogeneous versions, i.e., the hierarchi-
cal Bayesian SUR model (PHBSM) and the latent class SUR model (PLCSM), as
well as a hierarchical Bayesian semiparametric SUR model (FHBSM) and its nested
homogeneous version (FHomSM) to a simple homogeneous parametric SUR model
(PHomSM) used as benchmark.While the parametric heterogeneous models allow for
differences in marketing mix effects across stores or groups of stores the FHomSM
accounts for functional flexibility in price response, whereas the FHBSM accommo-
dates both heterogeneity and functional flexibility and the PHomSM none of these
features.

The main results of our empirical application with store-level scanner data can
be summarized as follows: First, the less complex parametric SUR models clearly
outperform the general heterogeneity SUR model with respect to model fit. This can
probably be traced back to the fact that not even a PHetSM with only two segments is
supported by our data (the two-segment PHetSM yielded one empty segment with no
stores assigned to it and a corresponding segment size of almost zero). While PHBSM
turned out to perform best, differences in model fit measured in terms of the DIC and
the model likelihood between the nested versions of PHetSM (i.e., PHBSM, PLCSM,
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PHomSM) are rather marginal. The same applies to differences in predictive valid-
ity between those parametric models which turned out to be best for PHomSM and
was highest for PLCSM with two segments as far as only the heterogenous model
versions are considered. In contrast, the flexible SUR models could increase the pre-
dictive performance by about 6 and 10 %, respectively, compared to PHomSM. Thus,
referring to the first question posed in the introductory section: “Does a category-level
sales response model that allows for correlations between sales across brands ben-
efit from accommodating either store heterogeneity or functional flexibility or both
features in terms of fit and predictive validity? And if, which of those features pays
off more?”, we can conclude that the benefits from incorporating heterogeneity into a
parametric sales responsemodel are rather limitedwhereas accommodating functional
flexibility as well as allowing for heterogeneity and functional flexibility jointly really
pays off with respect to predictive performance. This finding is also reflected by the
results on estimated price elasticities. While differences in price elasticities between
the parametric SUR model versions are rather small, the flexible SUR models lead
to materially different price elasticities which vary across different price ranges and,
in case of FHBSM, additionally across stores. And, we find that differences in price
elasticities turned out much larger across different price ranges than across stores.
Hence, this kind of heterogeneity of price elasticities seems to play a more important
role whenmodeling price response than differences in price elasticities across stores or
groups of stores. Estimated price effects of the semiparametric SUR models uncover
complex nonlinearities and differences across stores in case of FHBSM which further
helps to explain the superiority of the flexible SUR models with respect to predictive
performance.

The computation of expected category profits revealed that the loss management
incurs by using a parametric instead of the best performingmodel, i.e., FHBSM, ranges
from about 6 % when optimal prices are set according to the most simple parametric
model PHomSM up to about 8 and 11 % when optimal prices are set according to the
heterogeneous models PHBSM and PLCSM, respectively. These results resemble our
findings on predictive performance where the PHomSM also constituted the best para-
metric model. Interestingly, despite different underlying pricing strategies, expected
category profits obtained fromusing FHomSMand FHBSMdo not differ to a noticable
extent. Thus, the findings on expected profits indicate the importance of a flexiblemod-
eling approach, too. Actually, the various models reveal materially different pricing
implications where differences are not only due to the incorporation of heterogeneity
into a homogeneous sales response model. Accounting for functional flexibility only
also leads to a different uniform pricing strategy compared to PHomSM, and allowing
for heterogeneity and functional flexibility yields a different micromarketing pricing
strategy compared to PHBSM which is also reflected by the differences in expected
profits.We therefore can respond to the second question raised in the introduction: “Do
category-level store sales models with either different representations of heterogene-
ity and/or flexibly modeled price effects provide different implications with respect
to expected profits and optimal prices?” with a clear ‘yes’. Certainly, expected profit
calculations and related pricing implications are always dependent on the modeling
approach chosen and may be different when extending our category management per-
spective to a cross-category management or shopper marketing point of view. On the
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other hand, we accounted for model uncertainty in our optimization step by using 200
Gibbs samples of coefficients instead of point estimates.

Referring to the third question: “Should retailers adopt a store-level, segment-level
or chain-level pricing policy?”, a uniform pricing strategy which is much less com-
plex to implement than micromarketing for a retailer can be recommended for our
data (as FHBSM and FHomSM perform nearly equally well concerning expected
profits). However, this result implies that the observed pricing of DFF is suboptimal.
We, therefore, investigated the pricing behavior of this retailer and found that he does
not use a simple cost plus approach for setting prices (please compare Sect. 3.1).
Following Chintagunta (2002), we further computed markups (price − cost) and
margins ([price − cost]/price) as well as their correlations between brands, which
turned out rather small (at most 0.35). Thus, it could be confirmed that DFF does not
apply simple pricing rules like equal markups or equal margins (Blattberg and Neslin
1990). Since price zones of DFF are almost exclusively defined by the extent of local
competition, it seems not unlikely at first glance that the pricing strategy of DFF is
oriented toward prices of competitive retailers. We are not able to directly confirm
this assumption due to the lack of (price) data of competing retailers. However, based
on proxy variables relating to competitive characteristics of each stores trading area
(distance in miles to nearest Omni warehouse, ratio of DFF store sales to nearest
Omni warehouse, average distance in miles to nearest five Cubfoods supermarkets,
ratio of DFF store sales to average of nearest five Cubfoods supermarkets), Hoch et al.
(1995) already demonstrated that a relationship between price sensitivities and price
zones does not exist. Therefore, even if DFF actually set prices based on competitive
retailers, this pricing strategy might not be the optimal one from a profit-maximizing
point of view. Alternatively, the retailer might use a different optimization approach
for setting prices, such as maximizing store traffic or maximizing store profit taking
into account cross-category effects, and/or the underlying sales response model might
be a less complex model (e.g., a linear function). Nevertheless, the results of our study
show that there seems to be huge potential for improving the retailer’s profits in the
considered category, in particular when using a flexible modeling approach.

Of course, there are several limitations of our empirical study. First of all, results
have to be replicated for numerous product categories to generalize our findings. Fur-
thermore, our results are based on the underlying specification of our models. For
instance, we did not account for price endogeneity constituting a recent and contro-
versially discussed issue in the relevantmarketing literature.Approaches to account for
endogeneity in prices are the well-known instrument variable approach (e.g., Chinta-
gunta 2000; Villas-Boas andWiner 1999), so-called control function approaches (e.g.,
Luan and Sudhir 2010; Petrin and Train 2010), or the explicit modeling of pricing
behavior of firms/retailers in terms of a so-called supply-side model (e.g., Manchanda
et al. 2004; Otter et al. 2011). Chintagunta et al. (2003) use wholesale prices as instru-
ments for retail prices and demonstrate that controlling for endogeneity leads to amore
elastic demand in the refrigerated orange juice product category of DFF. If this find-
ing holds predicted unit sales as well as expected profits of our study would turn out
smaller. However, according to Rossi (2014) manufacturers account for advertising
and promotional events when setting wholesale prices leading to an invalid instrument
that “can cause the estimates to differ even when there is no endogeneity bias” (Rossi
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2014, p. 671).21 Another important limitation of our study is that it does not consider
cross-category effects (related studies based on household-level data are, e.g., Ainslie
and Rossi 1998; Chib et al. 2002; Kim et al. 1999; Manchanda et al. 1999; Russell and
Kamakura 1997; Russell and Petersen 2000 and studies based on store-level data are,
e.g., Bezawada et al. 2009; Shankar and Kannan 2014;Wedel and Zhang 2004), which
presumably would lead to different profit implications (as already mentioned above).
Furthermore, we account for interdependencies between sales of brands only in terms
of correlations of the error terms within a SUR framework. Accommodating the fact
that sales of one brand are significantly affected by sales of other brands (e.g. Beza-
wada et al. 2009; Elrod et al. 2002; Shankar and Kannan 2014) would lead to a more
general simultaneous equation model including the unit sales of competing brands as
further covariates. However, the optimization problemof our studywould then become
much more complex. For this reason, we leave this issue to future research.

The optimization problem considered does not take into account every aspect which
influences a retailer’s pricing decision problem. For example, due to the lack of
data we did not investigate the effects of competitive retailers. However, we pre-
served the retailer’s current price image by imposing that the average price level in a
given week before and after optimizing price levels must not change noticeably just
in order to avoid competitive reactions (Montgomery 1997). Nevertheless, Shankar
and Bolton (2004) showed that competitive factors are the most important determi-
nants of a retailer’s pricing decision. Thus, if possible, they should be taken into
account. Moreover, retail prices of a brand are also influenced by the pricing his-
tory of the brand (e.g., Nijs et al. 2007), which could be accounted for, e.g., by the
incorporation of lagged price variables into the sales response models, as well as by
temporary deals of manufacturers (e.g., Levy et al. 2004) which could be passed on to
consumers.

Another limitation of the present work is that optimal prices are based on a given
promotional strategy, relating to the use of displays in our data. Of course, different
scenarios of display usage could be considered in our optimizationmodel but according
to Ailawadi et al. (2009), pricing and promotional activities should be simultaneously
investigated “in order to avoid sub-optimal decisions on both fronts” (Kopalle et al.
2009, p. 62). On the other hand, setting prices conditional on a fixed promotional
calendar is common retailer practice (e.g., Kim et al. 1999; Chintagunta et al. 2003.
The ’complete’ optimization problem (if it exists) would further comprise aspects
of space management (Hoch and Lodish 1998) like the planning of order quantities
and shelf-space allocation (examples considering such aspects can be found in Hall
et al. 2010; Murray et al. 2010; Tellis and Zufryden 1995). The research focus of the
present study lies on the comparison of the statistical and managerial performance of
the various models considered and of different pricing scenarios arising from these
models “rather than on prescribing an approach for determining optimal prices” (Khan

21 We repeated our optimization exercise for PHomSM over four weeks by simulating a more elastic
demand. Similar to Chintagunta et al. (2003), we found that expected profits are lower when accounting
for price endogeneity. However, this is reasonable since expected unit sales are in consequence lower, too.
Optimal prices turn out somewhat different while the average price level of the product category does not
change according to expression (19).
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and Jain 2005, p. 523). As such, the computed expected profits must not be considered
as numbers “set in stone”, but should rather suggest the relative superiority of the
flexible semiparametric models compared to parametric models. Further note that
expected profits are larger than actual profits which leads to increased unit sales, as
well. From the retailer’s perspective, this fact can cause problems with respect to
capacity, possible additional storage costs, shelf-space optimization, etc. Thus profit
increases have to be critically reflected against these aspects.

Finally, optimal prices obtained here are based on the assumption that the retailer’s
objective is to maximize the chain-level profit of a product category. Other objectives
could be themaximization of product category sales or store traffic (e.g., Basuroy et al.
2001; Klapper 2000; Reibstein and Gatignon 1984). For example, there are so-called
‘loss leader’ categories where prices are close to wholesale costs in order to generate
store traffic rather than to maximize profits of these product categories (e.g., Kumar
and Leone 1988; Wedel et al. 2004). The retailer could further optimize the overall
profit of each store (e.g., Song and Chintagunta 2006) requiring the simultaneous
determination of optimal prices (and other marketing activities) across different prod-
uct categories. In the context of shopper marketing (Shankar et al. 2011) retailers are
also maximizing customer lifetime value. This objective, however, would require the
availability of individual-level data (panel data, loyalty card data). To address differ-
ent optimization objectives would of course require to extend our modeling approach
beyond category management taking into account cross-category effects, activities
or reactions of competing retailers, spatially correlated effects of neighboring stores,
or even effects of aisle management (Bezawada et al. 2009; Inman et al. 2009), for
example.

For practitioners the question arises which approach of modeling price response
should be used for prediction and optimization in which situation. In the refrigerated
orange juice category of DFF considered in our empirical application we can observe
some extremely deep price discounts favoring a flexible model version which is able
to reproduce complex nonlinearities in price response based on such an extreme price
distribution.Moreover, the extent of (store) heterogeneity in our data seems to be rather
moderate. Thismay be explained by the fact that the data set comes from a supermarket
chain located in one metropolitan area which is geographically limited. Thus, if in
general the stores of a retailer are spread over a large area (e.g., the whole country)
and price discounts are less extreme the general heterogeneity SUR model could
perform similarly or even better than the other model versions, as well. In that case,
one could further analyze mixed pricing strategies, as for example a uniform pricing
policy in one segment and amicromarketing strategy in another segment. A simulation
study with synthetic data could further help to get more insights how the underlying
heterogeneity distribution of store-level data affects model estimates and managerial
implications on pricing strategies. Moreover, an interesting and challenging aspect for
future research would be the development of a flexible general heterogeneity SUR
model.
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Appendix 1: General heterogeneity SUR model

The marginal model

We use the partly marginalized Gibbs sampler suggested by Frühwirth-Schnatter
et al. (2004) where the random effects are integrated out when sampling S and
γ = (α, βG

1 , . . . , βG
K ). If segment membership is known the random effects βi can be

rewritten as

βi = βG
k + bi , bi ∼ N (0, QG

k ). (22)

Under the assumption that bi and εi are independent (Frühwirth-Schnatter 2006) the
marginal model is obtained by substituting (22) into model (4):

yi = Xiα + Wiβ
G
k + ε̃i , ε̃i ∼ N (0,Wi Q

G
k (Wi )

′ + Σ ⊗ ITi ). (23)

Introducing indicator variables

H (k)
i =

{
1, if Si = k,

0, otherwise,
k = 1, . . . , K , (24)

leads to the following representation of the marginal model:

yi = Ziγ + ε∗
i , ε∗

i ∼ N (0, Vi ) (25)

with the design matrix

Zi =
(
Xi Wi H

(1)
i · · · Wi H

(K )
i

)
(26)

and the covariance matrix

Vi = Wi H
(1)
i QG

1 (Wi )
′ + · · · + Wi H

(K )
i QG

K (Wi )
′ + Σ ⊗ ITi . (27)

Prior specifications

The parameter vectors α and βG
k (k = 1, . . . , K ) are assumed to be a priori

independent leading to a joint prior N (μ0γ ,Σ0γ ) for γ = (α, βG
1 , . . . , βG

K ) with
μ0γ = (μ0α, μ0βG

1
, . . . , μ0βG

K
)′. Σ0γ is a block diagonal matrix with diagonal ele-

ments (Σ0α,Σ0βG
1
, . . . , Σ0βG

K
). We determined the prior means μ0α for the fixed

effects α and μ0βG
k

for the group-specific effects βG
k (k = 1, . . . , K ) by estimat-

ing a homogeneous SUR model via Gibbs sampling implemented in the R function
rsurGibbs() contained in the R package bayesm (see Rossi et al. 2005 for details).

About the remaining parameters we stay nearly noninformative choosing Σ0α =
Σ0βG

1
= · · · = Σ0βG

K
= 50I , a0Σ = 1 and B0Σ = 0.005I and e0k = 1 for
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k = 1, . . . , K . The covariance matrices QG
k (k = 1, . . . , K ) are defined as diag-

onal matrices with diagonal elements (τ 2k1, . . . , τ
2
kr ) (Gelfand et al. 1995, p. 483)

where r = ∑M
m=1 rm corresponds to the dimension of βi . Thus, inverse gamma priors

IG(ak0h, b
k
0h) are placed on the variance parameters τ 2kh (h = 1, . . . , r) with hyper-

parameters ak0h = bk0h = 0.001 (h = 1, . . . , r , k = 1, . . . , K ). For our data used in
the empirical application, we found that applying diagonal covariance matrices QG

k
(k = 1, . . . , K ) considerably improved themodel fit of the hierarchical Bayesian SUR
model and the general heterogeneity SUR model (measured by the model likelihood).
In the context of a single (HB) regression model, Andrews et al. (2008) have shown
that the predictive performance of themodel can be improved (and besidesmodel com-
plexity will be reduced) by not estimating covariances between store-specific effects.
The respective assumption that, for example, the price sensitivity of a store i is inde-
pendent of the display activity in another store i ′ is reasonable in the context of sales
data belonging to one retail chain since customers usually shop in the store which
is closest to their home (cf. Andrews et al. 2008, p. 25). If the covariance matrices
QG

k (k = 1, . . . , K ) were non-diagonal matrices we could choose a0QG
K

= r + 1 and
B0QG

K
= r I for k = 1, . . . , K as hyperparameters for the inverse Wishart prior.

Parameter estimates are based on the last 2000 iterations of the MCMC algorithm.
Due to high computing times the burn-in period was limited to 1000 iterations for the
one-segment models and the unidentified versions of the two-segment models, and to
8000 iterations when the latent class SUR model had to be identified via constrained
permutation sampling. Trace plots of sampled coefficients indicated that these numbers
of burn-in iterations are sufficient to ensure convergence of the MCMC algorithm.

Bayesian inference

The joint posterior of the latent random effects β I = (β1, . . . , βN ), the latent seg-
ment indicator S = (S1, . . . , SN ) and all unknown parameters φ = (α, βG

1 , . . . , βG
K ,

QG
1 , . . . , QG

K , η1, . . . , ηK ,Σ) given the data y = (y1, . . . , yN ) is proportional to

π(β I , S, φ|y) ∝ f (y|β I , S, φ)π(β I |S, φ)π(S|φ)π(φ). (28)

For a fixed number K of segments the following sampling scheme results (compare
Frühwirth-Schnatter et al. 2004, 2005, and the derivation of steps 4 (a2) and (b) in
Weber (2015)):

1. Sample Si , i = 1, . . . , N , from

P(Si = k|·) ∝ ηk · f (yi |α, βG
k , QG

k ,Σ), k = 1, . . . , K , (29)

where the likelihood f (yi |α, βG
k , QG

k ,Σ) is represented by the density of the
normal distribution

N (Xiα + Wiβ
G
k ,Wi Q

G
k (Wi )

′ + Σ ⊗ ITi ).
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2. Sample η from the Dirichlet distribution D(e0,1 + N1, . . . , e0,K + NK ) with
Nk = #{Si = k}.

3. α, βG
1 , . . . , βG

K and β I are conditionally independent and can be sampled within
two blocks.
(a) Sample γ from the normal distribution N (μγ ,Σγ ) with

Σγ =
(

N∑

i=1

(Zi )
′ (Vi )−1 Zi + (

Σ0γ
)−1

)−1

,

μγ = Σγ

(
N∑

i=1

(Zi )
′ (Vi )−1 yi + (

Σ0γ
)−1

μ0γ

)
.

(b) Sample βi , i = 1, . . . , N , from the normal distribution N
(
μβi ,Σβi

)
with

Σβi =
(

(Wi )
′ (Σ ⊗ ITi

)−1
Wi +

(
QG

Si

)−1
)−1

,

μβi = Σβi

(
(Wi )

′ (Σ ⊗ ITi
)−1

(yi − Xiα) +
(
QG

Si

)−1
βG
Si

)
.

4. The covariance matrices QG
1 , . . . , QG

K and Σ are conditionally independent so
that sampling can be done within two blocks.

(a1) If the covariance matrices QG
k , k = 1, . . . , K , are non-diagonal matrices they

can be sampled from the inverse Wishart distribution IW (aQk , BQk ) with

aQk = a0QG
k

+ Nk/2, BQk = B0QG
k

+ 1

2

N∑

i=1

H (k)
i (βi − βG

k )′(βi − βG
k ).

(a2) If the covariance matrices QG
k , k = 1, . . . , K , are diagonal matrices of the

form QG
k = diag(τ 2k1, . . . , τ

2
kr ) (k = 1, . . . , K ) the variance parameters τ 2kh ,

k = 1, . . . , K and h = 1, . . . , r , can be sampled from the inverse gamma
distribution IG(aτkh , bτkh ) with

aτkh = ak0h + Nk/2, bτkh = bk0h + 1

2

N∑

i=1

H (k)
i (βih − βG

kh)
2.

(b) Sample Σ from the inverse Wishart distribution IW (aΣ, BΣ) with

aΣ = a0Σ + 1

2

N∑

i=1

Ti , BΣ = B0Σ + 1

2

N∑

i=1

A(i)

with A(i) =(Yi −P∗
i Bi )

′
(Yi −P∗

i Bi ),Yi =(yi1, ..., yiM ), P∗
i =(Pi1, ..., PiM ),

Pim = (Xim,Wim), Bi = diag(γi1, ..., γiM ) and γim = (αm, βim)
′
.

The R code of the estimation procedure is available from the authors upon request.
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Appendix 2: Hierarchical Bayesian semiparametric SUR model

Inference usesMCMC simulation, drawing from full conditionals of single parameters
or blocks of parameters given the rest and the data. Let ym = (ym11, . . . , ymNT )′ and
ηm = (ηm11, . . . , ηmNT )′ denote the vector on the m-th response variable and the
corresponding vector of predictors. Then the additive predictors in (7) can be written
as

ηm =
M∑

j=1

Amj Xmjβmj +
L∑

l=0

Wml Zγml + Vmδm, (30)

where Amj is a n × n diagonal matrix with possible entries 1 + αm1 j , . . . , 1 + αmN j

depending on the store i = 1, . . . , N a particular observation pertains to (with n being
the total number of observations of brand m), Xmj corresponds to the design matrix
for the j th price effect of brandm with elements given by the B-spline basis functions
evaluated at the observed prices Pjit , Wml is the (diagonal) design matrix for the
lth parametrically and store-specifically modeled variable Dl

mit , Z is a 0/1 incidence
matrix indicating if a particular observation belongs to store i , Vm is the design vector
for the homogeneous parametric effect of Et , βmj = (βmj1, . . . , βmjOmj )

′ is the vector
of regression parameters for function fmj .

An alternative formulation in terms of the random coefficients is

ηm =
M∑

j=1

( fmj + X̃mj Zαmj ) +
L∑

l=0

Wml Zγml + Vmδm, (31)

where X̃mj = diag( fmj (Pm11), . . . , fmj (PmNT )) and αmj = (αm1 j , . . . , αmN j )
′ the

vector of random coefficients for function fmj .
Let β = (. . . , β ′

mj , . . .)
′ and α = (. . . , α′

mj , . . .)
′ denote the stacked vec-

tor of all regression parameters, τ 2 = (. . . , τ 2mj , . . . )
′, φ2 = (. . . , φ2

mj , . . . )
′,

ψ2 = (. . . , φ2
ml , . . . )

′ the vectors of corresponding variances τ 2mj , φ2
mj , ψ2

ml and
δ = (δ′

1, . . . , δ
′
M )′ the stacked vector of all fixed effects parameters.

Posterior analysis is then based on

π
(
β, α, τ 2, φ2, ψ2, δ,Σ

∣∣y
)

∝ f
(
y
∣∣β, α, δ,Σ

) M∏

m=1

M∏

j=1

[
π

(
βmj

∣∣τ 2mj

)
π

(
αmj

∣∣φ2
mj

)
π

(
τ 2mj

)
π

(
φ2
mj

)]

(32)

×
M∏

m=1

L∏

l=0

[
π

(
γml

∣∣ψ2
ml

)
π(ψ2

ml)
]
π (δ) π (Σ) (33)

with f (y|·) denoting the likelihood of the data.
Parameters are estimated via Gibbs sampling within the following blocks (Lang

et al. 2003):
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1. Sample βmj , m = 1, . . . , M , j = 1, . . . , M . The full conditional for βmj is
Gaussian, βmj | · ∼ N (μmj , P−1

mj ), with precision matrix

Pmj = X ′
mj A

2
mj Xmj

σ 2
m|−m

+ Kmj

τ 2mj

and mean

μmj = P−1
mj

(
1

σ 2
m|−m

X ′
mj Amj (ym − om)

)
.

Here, σ 2
m|−m is the (conditional) variance

σ 2
m|−m = σ 2

m − Σm,−mΣ−1
m Σ ′

m,−m,

derived from partitioning Σ into

Σ =
(

σ 2
m Σm,−m

Σ ′
m,−m Σm

)

(after reordering for the mth component of the error variable). The vector om is an
offset vector defined in Lang et al. (2003).

2. Sample αmj , m = 1, . . . , M , j = 1, . . . , M . The full conditionals for the scaling
factors are derived from (31) with αmj | · ∼ N (μmj , P−1

mj ) and

Pmj = Z ′ X̃2
mj Z

σ 2
m|−m

+ I

φ2
mj

and mean

μmj = P−1
mj

(
1

σ 2
m|−m

Z ′ X̃mj (ym − om)

)
.

3. Sample γml , m = 1, . . . , M , l = 0, . . . , L . Full conditionals are standard and
omitted here.

4. Sample δm , m = 1, . . . , M . Full conditionals are standard and omitted here.
5. Sample τ 2mj , m = 1, . . . , M , j = 1, . . . , M . Full conditionals for the variance

parameters τ 2mj are inverse Gamma distributions with parameters

amj = 0.001 + rank(Kmj )

2
, bmj = 0.001 + 1

2
β ′
mj Kmjβmj . (34)
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6. Sample φ2
mj , m = 1, . . . , M , j = 1, . . . , M . Full conditionals for the variance

parameters φ2
mj are inverse Gamma distributions with parameters

amj = 0.001 + N

2
, bmj = 0.001 + 1

2
α′
mjαmj . (35)

7. Sample Σ . The full conditional for Σ is an inverse Wishart distribution with
parameters

a = 1 + n

2
, B = 0.005I + 1

2

N∑

i=1

T∑

t=1

(yit − ηi t )(yit − ηi t )
′. (36)

where Yit = (y1i t , . . . , yMit )
′ and ηi t = (η1i t , . . . , ηMit )

′

The complete sampling scheme can be found in Lang et al. (2003, pp. 270–271) in
combination with Lang et al. (2015). The estimation procedure of the semiparametric
SUR model is implemented in the software BayesX and the code is available from the
authors.

Appendix 3: Overview of model specifications

Model Specification Modeled effects

Intercept Price effects Display and
price ending
effects

Holiday effect

PHomSM Parametric,
homogeneous

Store-specific Equal across
stores

Equal across
stores

Equal across
stores

PLCSM Parametric,
heterogeneous

Store-specific Segment-
specific

Segment-
specific

Equal across
stores

PHBSM Parametric,
heterogeneous

Store-specific Store-specific Store-specific Equal across
stores

PHetSM Parametric,
heterogeneous

Store-specific Store-specific
within
segments

Store-specific
within
segments

Equal across
stores

FHomSM Semiparametric,
homogeneous

Store-specific Equal across
stores and
nonparametric

Equal across
stores

Equal across
stores

FHBSM Semiparametric,
heterogeneous

Store-specific Store-specific
and
nonparametric

Store-specific Equal across
stores
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Appendix 4: Optimization details

The optimization algorithm implemented in the R function genoud() is able to solve
problems for objective functions that are nonlinear or even discontinuous in para-
meters and provides a high probability of finding the global optimum (Sekhon and
Mebane 1998). The evolutionary algorithm starts with a population of trial solutions
(in our application one trial solution corresponds to a vector of prices of the 8 brands).
Then, a set of heuristic rules or operators (basically reproduction, mutation, crossover)
is used to modify the trial solutions in order to increase their fitness values (i.e.,
the values of the function which is optimized). The selection of trial solutions for
reproduction depends on their value of the objective function. The best trial solution
is reproduced in each generation. The remaining trial solutions are recombined or
mutated by applying the other operators (for details compare Sekhon and Mebane
1998, p. 192). That way, a new population (generation) results that “tends to be, on
average, better than its predecessor” (Mebane and Sekhon 2011, p. 3). The follow-
ing pseudo-code (adapted from Eiben and Smith 2003, p. 16) presents the general
procedure:

BEGIN
INITIALIZE population with random trial solutions
EVALUATE each trial solution
REPEAT UNTIL (termination criterion is satisfied) DO

1 SELECT trial solutions
2 RECOMBINE pairs of trial solutions
3 MUTATE trial solutions
4 EVALUATE each new trial solution
5 SELECT new trial solutions for the next generation

OD
END

Since the evolutionary algorithm is basically a genetic one where the code-strings
are floating-point vectors (see, e.g., Ali and Törn 2004 for a description of genetic
algorithms) its performance strongly depends on the population size (option pop.si ze)
which must to be sufficiently large (Mebane and Sekhon 2011). In our application we
chose pop.si ze = 3000 which leads to relatively high computing times but increases
the probability of finding the global optimum. The maximum number of generations
was set to max .generations = 300. The algorithm stops if the objective function
is not improved anymore in a fixed number (wait.generations) of generations. We
set wait.generations = 10. On average 25 generations were required to solve the
optimization problems. The option Domains comprises lower and upper bounds for
each variable which correspond to the observed price range for each price variable
in our applications. Finally, boundary.en f orcement = 2 ensures candidates that lie
within the bounds specified in Domains. The R code is available from the authors
upon request.

In our empirical application, optimization is done separately for each of the 89
weeks aswell as separately for each store/segment in case of the heterogeneousmodels.
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The following table summarizes the size of the respective optimization problems for
each model:

Model Number of problems to solve

PHomSM, FHomSM 89 weeks = 89 problems to solve

1 problem = 1 run for all brands and all stores

PLCSM (2) 89 weeks × 2 segments = 178 problems to solve

1 problem = 1 run for all brands and all stores of 1 segment

PHBSM, FHBSM 89 weeks × 81 stores = 7209 problems to solve

1 problem = 1 run for all brands (in 1 store)
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